Hybrid Algorithms for On-Line Search and Combinatorial Optimization Problems
نویسنده
چکیده
By now Artificial Intelligence (AI), Theoretical Computer Science (CS theory) and Operations Research (OR) have investigated a variety of search and optimization problems. However, methods from these scientific areas use different problem descriptions, models, and tools. They also address problems with particular efficiency requirements. For example, approaches from CS theory are mainly concerned with the worst-case scenarios and are not focused on empirical performance. A few efforts have tried to apply methods across areas. Usually a significant amount of work is required to make different approaches “talk the same language,” be successfully implemented, and, finally, solve the actual same problem with an overall acceptable efficiency. This thesis presents a systematic approach that attempts to advance the state of the art in the transfer of knowledge across the above mentioned areas. In this work we investigate a number of problems that belong to or are close to the intersection of areas of interest of AI, OR and CS theory. We illustrate the advantages of considering knowledge available in different scientific areas and of applying algorthms across distinct disciplines through successful applications of novel hybrid algorithms that utilize benefitial features of known efficient approaches. Testbeds for such applications in this thesis work include both open theoretical problems and ones of significant practical importance. We introduce a representation change that enables us to question the relation between the Pigeonhole Principle and Linear Programming Relaxation. We show that both methods have exactly the same bounding power. Furthermore, even stronger relation appears to be between the two methods: The Pigeonhole Principle is the Dual of Linear Programming Relaxation. Such a relation explains the “hidden magic” of the Pigeonhole Principle, namely its power in establishing upper bounds and its effectiveness in constructing optimal solutions. We also address various groups of problems, that arise in agent-centered search. In particular, we consider goal-directed exploration, in which search by a physical or fictitious agent with limited lookahead occurs in partially or completely unknown domains. The resulting Variable Edge Cost Algorithm (VECA) becomes the first method of solving goal-directed exploration problems that incorporates strong guidance from heuristic knowledge, yet is still capable of providing linear worst-case guarantees, even for complex search domains and misleading heuristics. This work aims at expanding the handset of AI tools that concern search efficiency and provides the foundation for further development of hybrid methods, cross-fertilization and successful applications across AI, CS theory, OR and other Computational Sciences.
منابع مشابه
Winner Determination in Combinatorial Auctions using Hybrid Ant Colony Optimization and Multi-Neighborhood Local Search
A combinatorial auction is an auction where the bidders have the choice to bid on bundles of items. The WDP in combinatorial auctions is the problem of finding winning bids that maximize the auctioneer’s revenue under the constraint that each item can be allocated to at most one bidder. The WDP is known as an NP-hard problem with practical applications like electronic commerce, production manag...
متن کاملA hybrid metaheuristic using fuzzy greedy search operator for combinatorial optimization with specific reference to the travelling salesman problem
We describe a hybrid meta-heuristic algorithm for combinatorial optimization problems with a specific reference to the travelling salesman problem (TSP). The method is a combination of a genetic algorithm (GA) and greedy randomized adaptive search procedure (GRASP). A new adaptive fuzzy a greedy search operator is developed for this hybrid method. Computational experiments using a wide range of...
متن کاملFinding the Shortest Hamiltonian Path for Iranian Cities Using Hybrid Simulated Annealing and Ant Colony Optimization Algorithms
The traveling salesman problem is a well-known and important combinatorial optimization problem. The goal of this problem is to find the shortest Hamiltonian path that visits each city in a given list exactly once and then returns to the starting city. In this paper, for the first time, the shortest Hamiltonian path is achieved for 1071 Iranian cities. For solving this large-scale problem, tw...
متن کاملA New Hybrid Conjugate Gradient Method Based on Eigenvalue Analysis for Unconstrained Optimization Problems
In this paper, two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS}) conjugate gradient method are presented to solve unconstrained optimization problems. A remarkable property of the proposed methods is that the search direction always satisfies the sufficient descent condition independent of line search method, based on eigenvalue analysis. The globa...
متن کاملA Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کاملSolving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm
The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...
متن کامل